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Abstract This paper addresses the real-time state estimation problem for dynamic systems while protecting exogenous inputs

against adversaries, who may be honest-but-curious third parties or external eavesdroppers. The Cramér-Rao lower bound

(CRLB) is employed to constrain the mean square error (MSE) of the adversary’s estimate for the exogenous inputs above a

specified threshold. By minimizing the MSE of the state estimate while ensuring a certain privacy level measured by CRLB, the

problem is formulated as a constrained optimization. To solve the optimization problem, an explicit expression for CRLB is first

provided. As the computational complexity of the CRLB increases with the time step, a low-complexity approach is proposed

to make the complexity independent of time. Then, a relaxation approach is proposed to efficiently solve the optimization

problem. Finally, a privacy-preserving state estimation algorithm with low complexity is developed, which also ensures (ϵ, δ)-

differential privacy. Two illustrative examples, including a practical scenario for protecting building occupancy, demonstrate

the effectiveness of the proposed algorithm.
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1 Introduction

An increasing array of applications necessitates users to send private data streams to a third party for
signal processing and decision-making [1, 2]. Due to privacy concerns, users prefer to send information
while protecting their sensitive data. As a result, privacy issues have gained increased attention in several
research fields, such as mobile robotic systems [3], network systems [4, 5], and control systems [6–8].

In recent years, privacy has been widely studied in various fields, e.g., machine learning [9–11], Nash
equilibrium [12, 13], decentralized optimization [14, 15], and real-time state estimation [1, 16, 17]. In
practice, the state estimates or measurements could be acquired by honest-but-curious third parties or
external eavesdroppers, leading to a privacy leakage [16–19]. For instance, in intelligent transportation
systems, users are often required to send measurements to a third party for monitoring or control purposes,
potentially compromising their privacy [1]. Besides, in environmental monitoring, the building occupancy
could be reliably estimated from the CO2 levels [17, 18]. Similarly, the thermal dynamics of a building
may also result in a privacy leakage of occupancy [19]. Therefore, the privacy preservation problem is an
important issue worth studying in real-time state estimation.

Among various privacy techniques, the most researched are encryption [15,20,21], information-theoretic
approach [17,22], and differential privacy [23,24]. Due to its ease of implementation, the differential pri-
vacy stands out compared to its competitors. Besides, due to its resilience to post-processing, differential
privacy makes reverse engineering of the private datasets difficult, and thus, has been widely adopted to
protect privacy in stochastic aggregative games [25], distributed optimization [26], and real-time state
estimation [1, 23, 27]. Especially for differentially private state estimation, the Kalman filtering problem
with input and output perturbation mechanisms has been firstly addressed in [1]. This work was extended
to multi-input multi-output systems, which broadens the applicability to multiple sensors for monitoring
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an environment [28]. Then, a two-stage architecture was proposed in [29] to overcome the drawback of
output perturbation mechanisms.

Another common approach for privacy preservation is using metrics from information theory to measure
private information leakage in response to a query on private datasets [30]. An information-theoretic
measure of privacy often relies on the mutual information, which measures private information leakage
by formulating the privacy problem as a generalized rate-distortion problem [31]. In addition, mutual
information, commonly used to measure the correlation between two random variables, also appears in
content related to real-time state estimation problems. For instance, an information-theoretic framework
for the privacy-aware optimal state estimation was proposed in [17], where the private dataset was modeled
as a first-order Markov process. However, as analyzed convincingly in [32], most mutual-information-
based results lack an intuitive or interpretable bound on the statistics of the estimation error by an
adversary. To address this limitation, a data-privacy approach was introduced in [33] by measuring
the adversary’s estimation error with the absolute error metric. However, the absolute error metric is
generally mathematically challenging to handle. Consequently, the Fisher information matrix and the
Cramér-Rao lower bound (CRLB) have been proposed as alternative frameworks [22,32,34,35]. Although
successful in treating control problems [35], Fisher information matrix does not directly capture the
performance of an adversary’s estimation accuracy. Therefore, the CRLB, based on mean square error
(MSE), is more widely adopted in practice [22,32,34]. However, existing studies [22,32,34] have focused
on protecting parameters that are time-invariant only. In contrast, when addressing the protection of
time-varying states in stochastic dynamic systems, the computational complexity continues to increase
as time progresses, thereby posing significant challenges. As far as we know, research on CRLB-based
privacy preservation is still lacking in real-time state estimation.

Motivated by the above analysis, in this paper, we investigate the real-time state estimation problem
with protecting exogenous inputs via CRLB. The merit of adopting CRLB lies in that it constrains
the MSE of the adversary’s estimate for the exogenous inputs above a specified threshold. However,
there exist some substantial difficulties in studying this problem. First, a primary issue is how to ensure
privacy level and state estimation accuracy simultaneously? To do so, we face with solving a non-convex
constrained optimization problem, which is challenging. Second, in CRLB-based privacy preservation,
calculating CRLB is necessary, but an explicit expression for CRLB is generally difficult to obtain. Third,
the computational efficiency is critically important for real-time state estimation, but the computational
complexity of the CRLB tends to become greater over the time step. Fourth, given that both are based
on noise perturbation strategy, is it possible to correlate the proposed CRLB-based privacy preservation
with the differential privacy? These difficulties are solved in this paper and the main contributions are
summarized as follows:

• This paper achieves real-time state estimation while protecting exogenous inputs. By employing
the CRLB, the MSE of the adversary’s estimate for the exogenous inputs is constrained above a
specified threshold. By minimizing the MSE of state estimate while ensuring a certain privacy
level measured by CRLB, a constrained optimization problem is constructed to ensure privacy level
and state estimation accuracy simultaneously. Furthermore, a relaxation approach is proposed to
efficiently solve the optimization problem.

• An explicit expression for the CRLB is provided, laying the foundation for CRLB-based privacy
preservation. Furthermore, a low-complexity approach for calculating the CRLB is proposed. As a
result, the computational complexity is significantly reduced from O(k3) to O(1), which means that
the computational complexity of the CRLB is reduced to be time-independent. This development
makes valuable sense for real-time state estimation.

• A privacy-preserving state estimation algorithm with low complexity is developed. Moreover, the
relationship between our proposed CRLB-based privacy preservation and differential privacy is es-
tablished. Specifically, the proposed algorithm is proven to ensure (ϵ, δ)-differential privacy. Finally,
the effectiveness of the proposed algorithm is demonstrated through two illustrative examples, in-
cluding a practical scenario for protecting building occupancy.

The reminder of this paper is organized as follows. Section 2 formulates the problem. Section 3
provides the design of the privacy-preserving state estimate and an explicit expression for the CRLB.
Section 4 presents the privacy-preserving state estimation algorithm with low complexity and its relation
to differential privacy, followed by two examples in Section 5. Section 6 concludes this paper.

Notations. Scalars, vectors and matrices are denoted by lowercase letters, bold lowercase letters,
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and bold capital letters, respectively. Scalar 0, zero vector, and zero matrix are all denoted by 0 for
simplicity. The set of all n-dimensional real vectors and all n × m real matrices are denoted by Rn

and Rn×m, respectively. Z+ represents the set of positive integers and S+ represents the set of positive
semi-definite matrices. For a square matrix A, tr(A) denotes its trace. A ⩾ 0 (or A > 0) means that
A is positive semi-definite (or positive definite). The block-diag(A0,A1, . . . ,Ak) represents the block
diagonal matrix with matrices A0,A1, . . . ,Ak on the principal diagonal. For the sequence of square
matrices A0,A1, . . . ,Ak with the same dimension, we define

∏k
i=0 Ai = AkAk−1 · · ·A0, which means

that they follow the descending order of the subscript. In represents the n × n identity matrix. For a
vector a, its Euclidean norm is denoted by ∥a∥. Further, ∥a∥A denotes its Euclidean norm weighted

with A > 0, i.e.,
√
aTAa. E[·] is the mathematical expectation operator. N (µ,Σ) denotes the Gaussian

distribution with mean µ and covariance matrix Σ. Besides, f(x) = O(g(x)) if there exists a positive
real number m such that |f(x)| ⩽ mg(x).

2 Problem formulation

Consider the following stochastic time-varying dynamic system:

xk = Fk−1xk−1 +Gk−1dk−1 +wk−1,

yk = Hkxk + vk,
(1)

where k = 1, 2, . . . is the time index; xk ∈ Rnx , yk ∈ Rny , and dk−1 ∈ Rnd are the state, the measurement,
and the exogenous input that should be protected at time step k, respectively; Fk−1 ∈ Rnx×nx , Gk−1 ∈
Rnx×nd , and Hk ∈ Rny×nx are known matrices; {wk} and {vk} are mutually independent Gaussian
white noise sequences with zero mean and known covariance matrices Qk ⩾ 0 and Rk > 0, respectively;
x0 ∼ N (x̄0,P0) is the initial state independent of the noise sequences. We assume that there is no
available prior information about the exogenous input dk−1. Under this case, dk−1 is generally modeled
as a deterministic, time-varying, but unknown (or uncertain) quantity (see, e.g., [36, 37]).

Assumption 1. rank(HkGk−1) = rank(Gk−1) = nd, for all k.

Remark 1. Assumption 1 is commonly used in existing literature, e.g., [36,37]. Note that Assumption
1 indicates that nx ⩾ nd and ny ⩾ nd.

dk−1

exogenous
input

system
yk

measurement

estimator
x̂k

state
estimate

adversary
d̂k−1

exogenous
input estimate

Figure 1 The privacy-preserving state estimation setup.

Let x̂k be the estimate of the state xk using the measurements y0,y1, . . . ,yk. In our setup, dk drives
the system, and the state estimate x̂k should be transmitted to a third party for signal processing or
decision-making purposes. In this process, an adversary might have the ability to acquire x̂k and use it
to infer dk−1, as illustrated in Fig. 1. In this work, the adversary could be an honest-but-curious third
party or an external eavesdropper, and is assumed to have the following two abilities:

• It can acquire the system matrices Fk−1, Gk−1, Qk−1, Hk and Rk;

• It can store and utilize the m (m ∈ Z+ and m ⩾ 2) state estimates x̂k−m+1, x̂k−m+2, . . . , x̂k to
infer dk−1.

It should be noted that the second ability makes sense in practice since the adversary cannot store infinite
data.

In this paper, we aim to design a state estimate x̂k that minimizes the MSE of xk on the premise of
protecting dk−1. It is worth emphasizing that we focus on protecting the latest exogenous input only at
each time step. In another word, at time step k, our goal is to protect dk−1. This makes sense in many
practical scenarios. For instance, in the motivating example given by Example 1 later, the adversary
is interested in the current building occupancy rather than the past. Before further discussion, we first
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briefly review the optimal state estimate in the minimum MSE sense for the system (1) without privacy
consideration, which is the unbiased minimum-variance state estimate proposed in [36].

2.1 Unbiased minimum-variance state estimate

Let x̂umv
k−1 and Ŝumv

k−1 , respectively, be the unbiased minimum-variance state estimate and its error co-

variance matrix at time step k − 1. Let x̂−
k be the estimate of the state xk using the measurements

y0,y1, . . . ,yk−1, and Ŝ−
k be the error covariance matrix of x̂−

k . Then, the one-step prediction is given as

x̂−
k = Fk−1x̂

umv
k−1 , (2)

Ŝ−
k = Fk−1Ŝ

umv
k−1F

T
k−1 +Qk−1. (3)

Once receiving the measurement yk, the unbiased minimum-variance state estimate and its error covari-
ance matrix at time step k are given as

x̂umv
k = x̂−

k +Kk(yk −Hkx̂
−
k ), (4)

Ŝumv
k = Ŝ−

k − Ŝ−
k H

T
kC

−1
k HkŜ

−
k + (Gk−1 − Ŝ−

k H
T
kC

−1
k HkGk−1)(G

T
k−1H

T
kC

−1
k HkGk−1)

−1

· (Gk−1 − Ŝ−
k H

T
kC

−1
k HkGk−1)

T, (5)

where

Kk = Ŝ−
k H

T
kC

−1
k + (Gk−1 − Ŝ−

k H
T
kC

−1
k HkGk−1)(G

T
k−1H

T
kC

−1
k HkGk−1)

−1GT
k−1H

T
kC

−1
k ,

Ck = HkŜ
−
k H

T
k +Rk.

Despite achieving good state estimation accuracy, the unbiased minimum-variance state estimate given
by (4) cannot be transmitted directly as it may cause a privacy leakage of dk−1, as analyzed below.

2.2 Privacy issue

This section presents an illustrative example to demonstrate why the unbiased minimum-variance state
estimate given by (4) may cause a privacy leakage of dk−1. As the inference approach employed by
the adversary is neither unique nor the main concern of this paper, we next construct a straightforward
but suboptimal estimate d̂k−1 serving as an illustrative example. Specifically, from the state transition
equation in (1), we have Gk−1dk−1 = xk −Fk−1xk−1 −wk−1. From Assumption 1, by multiplying both
sides of the above equation by GT

k−1 and plugging in x̂k, x̂k−1 and ŵk−1 = 0, we can construct the
following estimate of dk−1:

d̂k−1 = (GT
k−1Gk−1)

−1GT
k−1(x̂k − Fk−1x̂k−1). (6)

We know from (6) that the adversary could estimate dk−1 by using the state estimates x̂k and x̂k−1. It

should be noted that d̂k−1 given by (6) is a suboptimal estimate because only two state estimates, x̂k

and x̂k−1, are used.
To demonstrate the necessity of protecting dk−1, several practical examples from the literature can

be considered. For instance, in building automation systems, it is crucial to prevent the inference of
occupancy levels from observable measurements such as CO2 concentrations or temperature dynamics
[17, 38]. Similarly, in smart grid applications, protecting a user’s electricity consumption data from
being accurately inferred by adversaries represents another key scenario where privacy is essential [39].
These examples highlight the broad relevance of protecting dk−1 across different domains. The following
example is provided to illustrate the privacy leakage of dk−1 caused by the unbiased minimum-variance
state estimate given by (4) in a practical scenario.

Example 1 (Building occupancy). Similar to [17, 18], we consider the evolution of CO2 in a building,
which can be modeled by the dynamic equation xk = axk−1+ bdk−1+wk−1, where xk is the level of CO2

at time step k, dk−1 is the occupancy of the building, i.e., the number of people in the building, wk−1

is the process noise, and a, b ∈ R are the parameters. The measurement at time step k is collected by a
CO2 sensor with a measurement equation given by yk = xk + vk, where vk is the measurement noise.

The occupancy of the building is sensitive and highly private information that could be reliably esti-
mated from the CO2 levels (see, e.g., [17]). To demonstrate this fact in our setup, we simulate the CO2
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evolution by taking a = 0.75, b = 1.75, and model {wk} and {vk} as Gaussian white noise sequences
with variances 0.1 and 0.05, respectively. The initial state is distributed from the Gaussian distribution,
with a mean and variance of 0.01. The real privacy state is given as dk−1 = round(0.5 cos(k) + 5), where
round(·) is the rounding function.
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(a) CO2 level and its estimate by the unbiased

minimum-variance state estimate.
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(b) Occupancy and its estimate by the adversary using (6).

Figure 2 CO2 level, occupancy and their estimates.

Fig. 2(a) depicts the trajectory of the CO2 level in the building and the estimated trajectory by the
unbiased minimum-variance state estimate given by (4). Fig. 2(b) illustrates the trajectory of the occu-
pancy and the estimated trajectory by the adversary using (6), where the state estimates used in (6) are
x̂umv
k and x̂umv

k−1 . The plots reveal that the CO2 level and the occupancy are well estimated, suggesting
that transmitting the CO2 estimates to the third party could result in a privacy loss of the occupancy.

Based on the above analysis, we know that the unbiased minimum-variance state estimate cannot be
transmitted directly, and thus, a privacy-preserving state estimate in the minimum MSE sense should be
designed.

3 Design of the privacy-preserving state estimate via CRLB

In this section, we provide the privacy-preserving state estimation in the minimum MSE sense via CRLB.
Inspired by the noise perturbation strategy, we consider perturbing the unbiased minimum-variance state
estimate with a random noise.

3.1 Perturbed noise approach

We design the privacy-preserving state estimate x̂k by perturbing x̂umv
k with a zero-mean Gaussian noise

as follows:

x̂k = x̂umv
k +αk, (7)

where αk ∼ N (0,Σk) is independent of x̂umv
k , and the covariance matrix Σk is to be determined. The

determination of Σk is the main concern of our noise perturbation strategy since it determines not only
the estimation accuracy of x̂k, but also the privacy level of dk−1. To measure the privacy level, we employ
the CRLB, as specified by the following lemma.

Lemma 1 (Cramér-Rao lower bound, [40]). Let X = {x1, . . . ,xm} be a sample from P ∈ P = {Pθ :
θ ∈ Θ}, where Θ is an open set in Rm. Suppose that T (X) is an estimator with E[T (X)] = g(θ) being
a differential function of θ, Pθ has a probability density function pθ with respect to a measure ν for all
θ ∈ Θ, and pθ is differential as a function of θ and satisfies ∂

∂θ

∫
h(x)pθ(x) =

∫
h(x) ∂

∂θpθ(x)dν, θ ∈ Θ,
for h(x) ≡ 1 and h(x) = T (x). Then,

Var(T (X)) ⩾

(
∂

∂θ
g(θ)

)T(
I(θ)

)−1 ∂

∂θ
g(θ), (8)
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where I(θ) = E[ ∂
∂θ log pθ(X)( ∂

∂θ log pθ(X))T] is the Fisher information matrix and assumed to be positive
definite for any θ ∈ Θ.

In this work, X = {x̂k−m+1, x̂k−m+2, . . . , x̂k}, T (X) = d̂k−1, θ = [dT
0 ,d

T
1 , . . . ,d

T
k−1]

T, g(θ) = dk−1.
We know from (8) that CRLB provides a lower bound for the MSE matrices of all the unbiased estimators,
i.e., provides an intuitive quantified metric for the performance of all the unbiased estimators. In this
paper, the merit of adopting CRLB lies in that it constrains the MSE of the adversary’s estimate for
the dk−1 above a specified threshold. We next provide a way of determining the covariance matrix Σk

through a constrained optimization with privacy constraint measured by CRLB.

3.2 Constrained optimization subject to privacy

We determine the covariance matrix Σk by minimizing the MSE of (7) as follows:

trE
[
(x̂k − xk)(x̂k − xk)

T
]
= trE

[
(x̂umv

k − xk)(x̂
umv
k − xk)

T
]
+ E

[
αkα

T
k

]
= tr(Ŝumv

k +Σk), (9)

and by constraining the MSE of the adversary’s estimate for the dk−1 above a specified threshold, say γ,
simultaneously. Thus, we construct the following constrained optimization problem:

min
Σk∈S+

tr(Σk)

s.t. tr
(
CRLB(dk−1)

)
⩾ γ, Σk ⩾ σInx ,

(10)

where CRLB(dk−1) represents the CRLB of dk−1, γ is a given value to quantify privacy level, and σ is
a small positive real number for numerical stability. The minimizer of (10) is the sought-after Σk.

We know from (9) that the greater Σk, the lower the state estimation accuracy. In addition, we know
from (10) that the greater γ, the higher the privacy level. Thus, by solving the problem (10), we achieve
the following two goals simultaneously:

• Utility : To minimize the MSE of the state estimate x̂k;

• Privacy : To ensure that the privacy level of dk−1 is no less than a pre-set value γ.

Before solving the problem (10), we should first calculate CRLB(dk−1). It is worth noting that the
state estimates employed by the adversary to estimate dk−1 are x̂k−m+1, x̂k−m+2, . . . , x̂k with the latest
state estimate x̂k depending on Σk. Thus, CRLB(dk−1) is a function of Σk. We next provide an explicit
expression for CRLB(dk−1) with respect to Σk.

3.3 Explicit expression for CRLB

It follows from (8) that calculating the Fisher information matrix is the premise of calculating the CRLB.
Thus, we start by calculating the Fisher information matrix.

1) Calculation for Fisher information matrix. At time step k, we should calculate the Fisher
information matrix for the history of exogenous inputs {d0,d1, . . . ,dk−1} based on the state estimates
x̂k−m+1, x̂k−m+2, . . . , x̂k. Denote

d0:k−1 := (dT
0 ,d

T
1 , . . . ,d

T
k−1)

T,αk′:k := (αT
k′ ,αT

k′+1, . . . ,α
T
k )

T,xk′:k := (xT
k′ ,xT

k′+1, . . . , x̂
T
k )

T,

x̂k′:k := (x̂T
k′ , x̂T

k′+1, . . . , x̂
T
k )

T, x̂umv
k′:k :=

((
x̂umv
k′

)T
,
(
x̂umv
k′+1

)T
, . . . ,

(
x̂umv
k

)T)T
, k′ := k −m+ 1.

Then, we have x̂k′:k = x̂umv
k′:k +αk′:k. Correspondingly, the covariance matrices of x̂k′:k and x̂umv

k′:k , denoted

by P̂k′:k and P̂umv
k′:k , respectively, are correlated by

P̂k′:k = P̂umv
k′:k +ΛΣ,k, (11)

where ΛΣ,k = block-diag(Σk′ ,Σk′+1, . . . ,Σk). Due to the linearity of the system (1) and the estimate
(4), we know that x̂k′:k obeys a Gaussian distribution:

x̂k′:k ∼ N (E[x̂k′:k], P̂k′:k). (12)



Sci China Inf Sci 7

Denote

Lk = LDK,kLHF,kΛG,k−1, (13)

where

LDK,k =


∏k′

i=1 Di

∏k′

i=2 Di . . . Inx∏k′+1
i=1 Di

∏k′+1
i=2 Di . . . . . . Inx

...
...

...
...

...
. . .∏k

i=1 Di

∏k
i=2 Di . . . . . . . . . . . . Inx

ΛK,k,

LHF,k = ΛH,k



0 0 · · · 0 0

Inx
0 · · · 0 0∏1

i=1 Fi Inx
· · · 0 0

...
...

. . .
...

...∏k−2
i=1 Fi

∏k−2
i=2 Fi . . . Inx 0∏k−1

i=1 Fi

∏k−1
i=2 Fi . . . Fk−1 Inx


,

Dk = (Inx −KkHk)Fk−1, ΛK,k = block-diag(K0,K1, . . . ,Kk),

ΛH,k = block-diag(H0,H1, . . . ,Hk), ΛG,k−1 = block-diag(G0,G1, . . . ,Gk−1).

Then, we provide an explicit expression for the Fisher information matrix of d0:k−1, as given in the
following theorem.

Theorem 1. For the system (1) and X = {x̂k−m+1, x̂k−m+2, . . . , x̂k}, the Fisher information matrix of
d0:k−1 is given as

I(d0:k−1) = LT
k P̂

−1
k′:kLk. (14)

To provide a proof of Theorem 1, we need the following three lemmas, where the mean E[x̂k′:k] and

the covariance matrix P̂k′:k in (12) are expressed with respect to d0:k−1. They are the basis of the proof
for Theorem 1.

Lemma 2 (Fisher information matrix, [41]). Let x ∼ N (µ(θ),Σ(θ)) be an n-variate Gaussian random
vector with parameter θ = (θ1, θ2, . . . , θm)T. Then, for 1 ⩽ i, j ⩽ m, the (i, j) entry of the Fisher
information matrix is

Ii,j =
∂µ

∂θi
Σ−1 ∂µ

T

∂θj
+

1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
. (15)

Based on Lemma 2, computing the Fisher information matrix I(d0:k−1) requires first determining

µ = E[x̂k′:k] and Σ = P̂k′:k, as presented in the following two lemmas.

Lemma 3. E[x̂k′:k] = Lkd0:k−1 + ck with ck being a constant vector independent of d0:k−1.

Proof. Denote x0:k := (xT
0 ,x

T
1 , . . . ,x

T
k )

T,y0:k := (yT
0 ,y

T
1 , . . . ,y

T
k )

T,w0:k−1 := (wT
0 ,w

T
1 , . . . ,w

T
k−1)

T,

and v0:k := (vT
0 ,v

T
1 , . . . ,v

T
k )

T. Then, we have

x0:k = LF,k−1

(
xT
0 ,w

T
0:k−1

)T
+ LF̃,kΛG,k−1d0:k−1,

y0:k = ΛH,kx0:k + v0:k, (16)

where

LF,k−1 =



Inx

F0 Inx

F1F0 F1 Inx

...
...

...
. . .∏k−1

i=0 Fi

∏k−1
i=1 Fi

∏k−1
i=2 Fi · · · Inx


, LF̃,k =



0 0 · · · 0 0

Inx
0 · · · 0 0∏1

i=1 Fi Inx
· · · 0 0

...
...

. . .
...

...∏k−2
i=1 Fi

∏k−2
i=2 Fi . . . Inx 0∏k−1

i=1 Fi

∏k−1
i=2 Fi . . . Fk−1 Inx


.
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Further, we have

x̂umv
k = Kkyk +Dkx̂

umv
k−1

= Kkyk +DkKk−1yk−1 +DkDk−1x̂
umv
k−2

=
(∏k

i=1 DiK0,
∏k

i=2 DiK1, . . . , Kk

)
y0:k +

k∏
i=1

Di(Inx
−H0K0)x̄0,

x̂umv
k′:k = LDK,ky0:k +

((∏k′

i=1 Di

)T
,
(∏k′+1

i=1 Di

)T
, . . . ,

(∏k
i=1 Di

)T)T
(Inx

−H0K0)x̄0

= LDK,kLHF,kΛG,k−1d0:k−1 + LDK,k

(
ΛH,kLF,k−1

(
xT
0 ,w

T
0:k−1

)T
+ v0:k

)
+
((∏k′

i=1 Di

)T
,
(∏k′+1

i=1 Di

)T
, . . . ,

(∏k
i=1 Di

)T)T
(Inx

−H0K0)x̄0,

= LDK,kLHF,kΛG,k−1d0:k−1 + LDK,k

(
ΛH,kLF,k−1

(
xT
0 ,w

T
0:k−1

)T
+ v0:k

)
+ c̃k, (17)

where

c̃k =
((∏k′

i=1 Di

)T
,
(∏k′+1

i=1 Di

)T
, . . . ,

(∏k
i=1 Di

)T)T
(Inx

−H0K0)x̄0.

Thus, we can obtain E[x̂k′:k] = E[x̂umv
k′:k +αk′:k] = E[x̂umv

k′:k ] = Lkd0:k−1 + ck, where

ck = LDK,k

(
ΛH,kLF,k−1

(
x̄T
0 , 0
)T)

+ c̃k

is a constant independent of d0:k−1. □

Lemma 4. P̂k′:k is independent of d0:k−1.

Proof. From (16) and the first equality of (17), we have

P̂umv
k′:k = LDK,k(ΛR,k +ΛH,kP0:kΛ

T
H,k)L

T
DK,k, (18)

where P0:k = E[(x0:k − E[x0:k])(x0:k − E[x0:k])]
T = LF,k−1block-diag(P0,ΛQ,k−1)L

T
F,k−1, ΛQ,k−1 =

block-diag(Q0,Q1, . . . ,Qk−1), and ΛR,k = block-diag(R0,R1, . . . ,Rk). We know from (18) that P̂umv
k′:k

is independent of dk−1. Moreover, from (11) and the mutual independence between the perturbed noise

and dk−1, we know that P̂k′:k is also independent of d0:k−1. □
Based on the above three lemmas, we now provide a proof of Theorem 1.

Proof of Theorem 1. From (15) and Lemmas 3–4, by substituting µ = E[x̂k′:k] and Σ = P̂k′:k into
(15), we have

I(d0:k−1) =
∂E[x̂k′:k]

∂d0:k−1
P̂−1

k′:k

∂E[x̂T
k′:k]

∂d0:k−1
=

∂(Lkd0:k−1)

∂d0:k−1
P̂−1

k′:k

∂(Lkd0:k−1)
T

∂d0:k−1
= LT

k P̂
−1
k′:kLk,

which completes the proof. □
Based on the explicit Fisher information matrix given by (14), we next provide an explicit expression

for CRLB(dk−1).

2) Calculation for CRLB. At time step k, we focus on the privacy of dk−1. Thus, following the
information inequality given by (8), we have

CRLB(dk−1) =

(
∂

∂d0:k−1
g(d0:k−1)

)T(
I(d0:k−1)

)−1 ∂

∂d0:k−1
g(d0:k−1)

=
(
0 Ind

) (
LT
k P̂

−1
k′:kLk

)−1
(
0 Ind

)T
, (19)

where g(d0:k−1) = dk−1 with g being a projection operator. We know from (19) that CRLB(dk−1) is the
nd×nd block at the right bottom of the inverse of the Fisher information matrix given by (14). However,
(19) cannot be employed directly since it is implicit with respect to the optimization variable Σk. In fact,
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adopting (19) directly will make (10) difficult to solve. Therefore, we need to simplify (19) further to an
explicit form with respect to Σk. By denoting the following matrices as partitioned forms:

P̂umv
k′:k =

(
P̂umv

k′:k−1 P̂umv
k′:k−1,k

P̂umv
k,k′:k−1 P̂umv

k

)
, P̂k′:k =

(
P̂k′:k−1 P̂umv

k′:k−1,k

P̂umv
k,k′:k−1 P̂umv

k +Σk

)
,Lk =

(
L11(k) 0

L21(k) Gk−1

)
, (20)

where L11(k) ∈ R(m−1)nx×(k−1)nd , L21(k) ∈ Rnx×(k−1)nd , we then provide an explicit expression for
CRLB(dk−1) with respect to Σk in the following theorem.

Theorem 2. For the system (1) and X = {x̂k−m+1, x̂k−m+2, . . . , x̂k}, an explicit expression for
CRLB(dk−1) with respect to Σk is given by

CRLB(dk−1) =
(
GT

k−1(Σk +Ak)
−1Gk−1

)−1
, (21)

where

Ak = P̂umv
k − P̂umv

k,k′:k−1P̂
−1
k′:k−1P̂

umv
k′:k−1,k +

(
L21(k)− P̂umv

k,k′:k−1P̂
−1
k′:k−1L11(k)

)
·
(
L11(k)

TP̂−1
k′:k−1L11(k)

)−1(
L21(k)

T − L11(k)
TP̂−1

k′:k−1P̂
umv
k′:k−1,k

)
. (22)

Proof. Denote P̂−1
k′:k =

(
Γ11 Γ12

Γ21 Γ22

)
. Then, we have

Γ11 = P̂−1
k′:k−1 + P̂−1

k′:k−1P̂
umv
k′:k−1,k∆

−1P̂umv
k,k′:k−1P̂

−1
k′:k−1,∆ = P̂umv

k +Σk − P̂umv
k,k′:k−1P̂

−1
k′:k−1P̂

umv
k′:k−1,k,

Γ12 = −P̂−1
k′:k−1P̂

umv
k′:k−1,k∆

−1, Γ21 = −∆−1P̂umv
k,k′:k−1P̂

−1
k′:k−1, Γ22 = ∆−1.

Further, denote

LT
k P̂

−1
k′:kLk =

(
L11(k)

T L21(k)
T

0 GT
k−1

)(
Γ11 Γ12

Γ21 Γ22

)(
L11(k) 0

L21(k) Gk−1

)
=

(
Φ11 Φ12

Φ21 Φ22

)
.

Then, we have

Φ11 = L11(k)
TP̂−1

k′:k−1L11(k) + L11(k)
TP̂−1

k′:k−1P̂
umv
k′:k−1,k∆

−1P̂umv
k,k′:k−1P̂

−1
k′:k−1L11(k)− L21(k)

T∆−1

· P̂umv
k,k′:k−1P̂

−1
k′:k−1L11(k) + L21(k)

T∆−1L21(k)− L11(k)
TP̂−1

k′:k−1P̂
umv
k′:k−1,k∆

−1L21(k),

Φ12 = L21(k)
T∆−1Gk−1 − L11(k)

TP̂−1
k′:k−1P̂

umv
k′:k−1,k∆

−1Gk−1,

Φ21 = GT
k−1∆

−1L21(k)−GT
k−1∆

−1P̂umv
k,k′:k−1P̂

−1
k′:k−1L11(k),Φ22 = GT

k−1∆
−1Gk−1.

Substituting into (19), we have

CRLB(dk−1) =
(
0 Ind

)(Φ11 Φ12

Φ21 Φ22

)−1 (
0 Ind

)T
=
(
GT

k−1∆
−1Gk−1 −

(
GT

k−1∆
−1L21(k)−GT

k−1∆
−1P̂umv

k,k′:k−1P̂
−1
k′:k−1L11(k)

)
·
(
L11(k)

TP̂−1
k′:k−1L11(k) + L11(k)

TP̂−1
k′:k−1P̂

umv
k′:k−1,k∆

−1P̂umv
k,k′:k−1P̂

−1
k′:k−1L11(k)

− L21(k)
T∆−1P̂umv

k,k′:k−1P̂
−1
k′:k−1L11(k) + L21(k)

T∆−1L21(k)− L11(k)
TP̂−1

k′:k−1

· P̂umv
k′:k−1,k∆

−1L21(k)
)−1(

L21(k)
T∆−1Gk−1 − L11(k)

TP̂−1
k′:k−1P̂

umv
k′:k−1,k∆

−1Gk−1

))−1

.

By some simplifications, we then have

CRLB(dk−1) =

(
GT

k−1

(
∆−1 −∆−1

(
L21(k)− P̂umv

k,k′:k−1P̂
−1
k′:k−1L11(k)

)(
L11(k)

TP̂−1
k′:k−1L11(k)

+
(
L21(k)

T − L11(k)
TP̂−1

k′:k−1P̂
umv
k,k′:k−1

)
∆−1

(
L21(k)− P̂umv

k,k′:k−1P̂
−1
k′:k−1L11(k)

))−1
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·
(
L21(k)

T − L11(k)
TP̂−1

k′:k−1P̂
umv
k′:k−1,k

)
∆−1

)
Gk−1

)−1

. (23)

Using the Woodbury matrix identity (see Page 258 of [42]) for the right-hand side of (23), we have

CRLB(dk−1) =

(
GT

k−1

(
∆+

(
L21(k)− P̂umv

k,k′:k−1P̂
−1
k′:k−1L11(k)

)(
L11(k)

TP̂−1
k′:k−1L11(k)

)−1

·
(
L21(k)

T − L11(k)
TP̂−1

k′:k−1P̂
umv
k′:k−1,k

))−1

Gk−1

)−1

=

(
GT

k−1

(
P̂umv

k +Σk − P̂umv
k,k′:k−1P̂

−1
k′:k−1P̂

umv
k′:k−1,k +

(
L21(k)− P̂umv

k,k′:k−1P̂
−1
k′:k−1L11(k)

)
·
(
L11(k)

TP̂−1
k′:k−1L11(k)

)−1(
L21(k)

T − L11(k)
TP̂−1

k′:k−1P̂
umv
k′:k−1,k

))−1

Gk−1

)−1

=
(
GT

k−1(Σk +Ak)
−1Gk−1

)−1
,

where Ak is given by (22). □
Based on the explicit expression for CRLB(dk−1) given in Theorem 2, the optimization problem (10)

can be rewritten more clearly as follows:

min
Σk∈S+

tr(Σk)

s.t. tr
((

GT
k−1(Σk +Ak)

−1Gk−1

)−1
)
⩾ γ, Σk ⩾ σInx .

(24)

Remark 2. As suggested by (24), a larger value of γ tends to result in a larger matrix Σk in the Löwner
order sense. The magnitude of γ reflects the strength of privacy protection. A larger γ corresponds to
stronger privacy, which requires increasing the uncertainty of the added noise and consequently reduces
the accuracy of state estimation. In another word, enhanced privacy protection is often achieved at the
expense of state estimation accuracy. This trade-off is a common characteristic of privacy-preserving
methods based on random perturbations. For example, the same principle applies to differential privacy:
smaller ϵ and δ values correspond to stronger privacy and require greater noise uncertainty, ultimately at
the expense of estimation accuracy (see, e.g., [1]). The specific choice of γ depends on the requirements
of the practical problem.

However, there exist two substantial difficulties in solving (24). Firstly, calculating CRLB(dk−1)
directly suffers from a heavy computational burden since the computational complexity of CRLB(dk−1)
becomes greater over the time step k. More specifically, the computational complexity of the matrix
Ak given by (22) increases over the time step k. Essentially, this is caused by the fact that calculating
CRLB(dk−1) requires the history of all the measurements up to time step k, i.e., y0,y1, . . . ,yk. As
such, the computational complexity of CRLB(dk−1) tends to become more expensive over time step k.
Secondly, (24) is a non-convex optimization problem since its first constraint is non-convex. Thus, an
analytic solution of (24) is hard to obtain. As well known, computational efficiency is critically important
for real-time state estimation. Thus, reducing the computational complexity of CRLB(dk−1) and solving
(24) efficiently are the two important issues that we will address sequentially in the following section.

4 Privacy-preserving state estimation with low complexity

In this section, we first reduce the computational complexity of CRLB(dk−1). Then, we propose a
relaxation approach for solving (24) and provide the privacy-preserving state estimation algorithm with
low complexity. Finally, we show that the proposed algorithm also ensures (ϵ, δ)-differential privacy.

4.1 Privacy-preserving state estimation algorithm with low complexity

For calculating the CRLB(dk−1) given by (21), the main computation lies in Ak given by (22). As the

computational complexity of (22) mainly lies in the matrices P̂umv
k′:k given by (18) and Lk given by (13),

we next provide low-complexity calculations for these matrices.
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1) Recursive calculation for P̂umv
k′:k . To avoid directly calculating the matrix P̂umv

k′:k at each time

step k, we design a recursive calculation for P̂umv
k′:k as follows.

Theorem 3. The following recursions hold:

Cov(x0,x0) = P0,

Cov(x0, x̂
umv
0 ) = P0H

T
0 K

T
0 , (25)

Cov(x̂umv
0 , x̂umv

0 ) = K0H0P0H
T
0 K

T
0 +K0R0K

T
0 . (26)

For k = 1, 2, . . . ,

Cov(xk,xk) = Fk−1Cov(xk−1,xk−1)F
T
k−1 +Qk−1, (27)

Cov(x̂umv
k , x̂umv

k ) = DkCov(x̂
umv
k−1 , x̂

umv
k−1)D

T
k +DkCov(x̂

umv
k−1 ,xk−1)F

T
k−1H

T
kK

T
k

+KkHkFk−1Cov(xk−1, x̂
umv
k−1)D

T
k +KkHkCov(xk,xk)H

T
kK

T
k +KkRkK

T
k , (28)

Cov(xk, x̂
umv
k ) = Fk−1Cov(xk−1, x̂

umv
k−1)D

T
k +Cov(xk,xk)H

T
kK

T
k . (29)

For j ∈ Z+, we have

Cov(xk+j , x̂
umv
k ) = Fk+j−1Cov(xk+j−1, x̂

umv
k ), (30)

Cov(x̂umv
k+j , x̂

umv
k ) = Dk+jCov(x̂

umv
k+j−1, x̂

umv
k ) +Kk+jHk+jFk+j−1Cov(xk+j−1, x̂

umv
k ). (31)

Proof. To complete this proof, we derive each of (25)–(31) as follows. For (25), we have

Cov(x0, x̂
umv
0 ) = Cov

(
x0, x̄0 +K0(y0 −H0x̄0)

)
= Cov(x0,K0y0) = Cov(x0,K0H0x0) = P0H

T
0 K

T
0 .

For (26), we have

Cov(x̂umv
0 , x̂umv

0 ) = Cov
(
x̄0 +K0(y0 −H0x̄0), x̄0 +K0(y0 −H0x̄0)

)
= Cov

(
K0(y0 −H0x̄0),K0(y0 −H0x̄0)

)
= Cov(K0y0,K0y0)

= Cov
(
K0(H0x0 + v0),K0(H0x0 + v0)

)
= K0H0P0H

T
0 K

T
0 +K0R0K

T
0 .

For (27), we have

Cov(xk,xk) = Cov(Fk−1xk−1 +Gk−1dk−1 +wk−1,Fk−1xk−1 +Gk−1dk−1 +wk−1)

= Fk−1Cov(xk−1,xk−1)F
T
k−1 +Qk−1.

For (28), we have

Cov(x̂umv
k , x̂umv

k )

= Cov(Dkx̂
umv
k−1 +Kkyk,Dkx̂

umv
k−1 +Kkyk)

= Cov(Dkx̂
umv
k−1 ,Dkx̂

umv
k−1) + Cov(Dkx̂

umv
k−1 ,Kkyk) + Cov(Kkyk,Dkx̂

umv
k−1) + Cov(Kkyk,Kkyk)

= DkCov(x̂
umv
k−1 , x̂

umv
k−1)D

T
k +Cov

(
Dkx̂

umv
k−1 ,Kk(Hkxk + vk)

)
+Cov

(
Kk(Hkxk + vk),Dkx̂

umv
k−1

)
+Cov

(
Kk(Hkxk + vk),Kk(Hkxk + vk)

)
= DkCov(x̂

umv
k−1 , x̂

umv
k−1)D

T
k +Cov(Dkx̂

umv
k−1 ,KkHkxk) + Cov(KkHkxk,Dkx̂

umv
k−1)

+ Cov(KkHkxk,KkHkxk) + Cov(Kkvk,Kkvk)

= DkCov(x̂
umv
k−1 , x̂

umv
k−1)D

T
k +DkCov(x̂

umv
k−1 ,xk−1)F

T
k−1H

T
kK

T
k +KkHkFk−1Cov(xk−1, x̂

umv
k−1)D

T
k

+KkHkCov(xk,xk)H
T
kK

T
k +KkRkK

T
k .

For (29), we have

Cov(xk, x̂
umv
k ) = Cov(xk,Dkx̂

umv
k−1 +Kkyk)
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= Cov(xk, x̂
umv
k−1)D

T
k +Cov(xk,yk)K

T
k

= Cov(xk, x̂
umv
k−1)D

T
k +Cov(xk,xk)H

T
kK

T
k

= Fk−1Cov(xk−1, x̂
umv
k−1)D

T
k +Cov(xk,xk)H

T
kK

T
k .

For (30), we have

Cov(xk+j , x̂
umv
k ) = Cov(Fk+j−1xk+j−1 +Gk+j−1dk+j−1 +wk+j−1, x̂

umv
k )

= Fk+j−1Cov(xk+j−1, x̂
umv
k ).

For (31), we have

Cov(x̂umv
k+j , x̂

umv
k ) = Cov(Dk+jx̂

umv
k+j−1 +Kk+jyk+j , x̂

umv
k )

= Dk+jCov(x̂
umv
k+j−1, x̂

umv
k ) +Kk+jCov(yk+j , x̂

umv
k )

= Dk+jCov(x̂
umv
k+j−1, x̂

umv
k ) +Kk+jCov(Hk+jxk+j +Hk+jvk+j , x̂

umv
k )

= Dk+jCov(x̂
umv
k+j−1, x̂

umv
k ) +Kk+jHk+jCov(xk+j , x̂

umv
k )

= Dk+jCov(x̂
umv
k+j−1, x̂

umv
k ) +Kk+jHk+jFk+j−1Cov(xk+j−1, x̂

umv
k ).

The proof is completed. □
Following Theorem 3, we realize recursive calculation for P̂umv

k′:k by computing each sub-block of P̂umv
k′:k

recursively at each time step k.
2) Time-independent calculation for Lk. We can see from (20) that the computational complexity

of Lk is caused by L11(k) and L21(k) since the sizes of these two matrices are dependent on the time step
k. To solve this problem, we introduce the following pseudo-CRLB (PCRLB) by replacing Lk with L̃k

in (19):

PCRLB(dk−1) :=
(
0 Ind

)(
L̃T
k P̂

−1
k′:kL̃k

)−1 (
0 Ind

)T
, (32)

where L̃k = Lk

(
0 Imnd

)T
∈ Rmnx×mnd . It is worth noting that the size of L̃k is independent of the time

step k. To calculate L̃k (instead of calculating Lk), denote

L̃DK,k =



Inx

Dk′+1 Inx∏k′+2
i=k′+1 Di Dk′+2 Inx

...
...

...
. . .∏k

i=k′+1 Di

∏k
i=k′+2 Di . . . . . . Inx


block-diag(Kk′ ,Kk′+1, . . . ,Kk), (33)

L̃HF,k = block-diag(Hk′ ,Hk′+1, . . . ,Hk)



Inx

Fk′ Inx∏k′+1
i=k′ Fi Fk′+1 Inx∏k′+2
i=k′ Fi

∏k′+2
i=k′+1 Fi Fk′+2 Inx

...
...

...
...

. . .∏k−1
i=k′ Fi

∏k−1
i=k′+1 Fi . . . . . . . . . Inx


. (34)

Then, the following proposition presents the calculation for L̃k.

Proposition 1. L̃k can be calculated as follows:

L̃k = L̃DK,kL̃HF,kblock-diag(Gk−m, . . . ,Gk−1). (35)

Proof. From (13) and L̃k = Lk

(
0 Imnd

)T
, we have

L̃k = LDK,kLHF,kΛG,k−1

(
0 Imnd

)T
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= LDK,kLHF,k

(
0

block-diag(Gk−m, . . . ,Gk−1)

)

= LDK,k

(
0

L̃HF,kblock-diag(Gk−m, . . . ,Gk−1)

)
= L̃DK,kL̃HF,kblock-diag(Gk−m, . . . ,Gk−1).

This completes the proof. □
The following proposition provides an explicit expression for the PCRLB(dk−1).

Proposition 2. An explicit expression for the PCRLB(dk−1) with respect to Σk is given by

PCRLB(dk−1) =
(
GT

k−1(Σk + Ãk)
−1Gk−1

)−1
, (36)

where

Ãk = P̂umv
k − P̂umv

k,k′:k−1P̂
−1
k′:k−1P̂

umv
k′:k−1,k +

(
L̃21 − P̂umv

k,k′:k−1P̂
−1
k′:k−1L̃11

)
·
(
L̃T
11P̂

−1
k′:k−1L̃11

)−1(
L̃T
21 − L̃T

11P̂
−1
k′:k−1P̂

umv
k′:k−1,k

)
, (37)

L̃11 =
(
I(m−1)nx

0
)
L̃k

(
I(m−1)nd

0
)T

, L̃21 =
(
0 Inx

)
L̃k

(
I(m−1)nd

0
)T

. (38)

Proof. The proof is similar to that of Theorem 2, and hence, omitted here. □
Note that the sizes of L̃11 and L̃21 given by (38) are independent of the time step k. We next provide

the relation between the PCRLB and the CRLB.

Proposition 3. For the PCRLB given by (32) and the CRLB given by (19), the following inequality
holds:

tr
(
CRLB(dk−1)

)
⩾ tr

(
PCRLB(dk−1)

)
. (39)

Proof. Denote LT
k P̂

−1
k′:kLk =

(
A B

BT C

)
, where A ∈ R(k−m)nd×(k−m)nd , B ∈ R(k−m)nd×mnd , C ∈

Rmnd×mnd . Then, we have

CRLB(dk−1) =
(
0 Ind

) (
LT
k P̂

−1
k′:kLk

)−1
(
0 Ind

)T
=
(
0 Ind

)(
0 Imnd

) (
LT
k P̂

−1
k′:kLk

)−1
(
0 Imnd

)T (
0 Ind

)T
=
(
0 Ind

)
(C−1 +C−1BT(A−BC−1BT)−1BC−1)

(
0 Ind

)T
, (40)

PCRLB(dk−1) =
(
0 Ind

)((
0 Imnd

)
LT
k P̂

−1
k′:kLk

(
0 Imnd

)T )−1 (
0 Ind

)T
=
(
0 Ind

)
C−1

(
0 Ind

)T
.

(41)

Due to C−1BT(A − BC−1BT)−1BC−1 ⩾ 0, we obtain CRLB(dk−1) ⩾ PCRLB(dk−1), and thus,
tr
(
CRLB(dk−1)

)
⩾ tr(PCRLB(dk−1)). □

Remark 3. From (40) and (41), we can directly derive the approximation error between PCRLB(dk−1)
and CRLB(dk−1), denoted as

e =
(
0 Ind

)
(C−1BT(A−BC−1BT)−1BC−1)

(
0 Ind

)T
.

Based on Propositions 2 and 3, the original optimization problem (24) can be relaxed as follows:

min
Σk∈S+

tr(Σk)

s.t. tr
((

GT
k−1(Σk + Ãk)

−1Gk−1

)−1
)
⩾ γ, Σk ⩾ σInx ,

(42)

It is not difficult to find that (42) has the same form as (24). This indicates that we reduce the compu-
tational complexity without increasing the difficulty of solving the problem (24).

3) Computational complexity. Compared with the CRLB(dk−1) given by (21), the computational
complexity of the PCRLB(dk−1) given by (36) is greatly reduced, as specified by the following theorem.
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Theorem 4 (Computational complexity). From (21) to (36), the computational complexity reduces
from O(k3) to O(1).

Proof. For calculating (21), the main computation lies in (22) and is specified as follows. Specifi-

cally, for calculating P̂umv
k − P̂umv

k,k′:k−1P̂
−1
k′:k−1P̂

umv
k′:k−1,k, the computational complexity is (nx(m− 1))2 +

n4
x(m − 1)2 + n2

x, for calculating L21(k) − P̂umv
k,k′:k−1P̂

−1
k′:k−1L11(k), the computational complexity is

(nx(m − 1))3 + n3
xnd(m − 1)2(k − 1) + nxnd(k − 1), and for calculating (L11(k)

TP̂−1
k′:k−1L11(k))

−1, the
computational complexity is (nx(m−1))3+n2

xn
2
d(m−1)2(k−1)2+((k−1)nd)

3. Additionally, for calculat-

ing (L21(k)−P̂umv
k,k′:k−1P̂

−1
k′:k−1L11(k))(L11(k)

TP̂−1
k′:k−1L11(k))

−1(L21(k)
T−L11(k)

TP̂−1
k′:k−1P̂

umv
k′:k−1,k), the

computational complexity is n2
xn

2
d(k−1)2, and for calculating P̂umv

k −P̂umv
k,k′:k−1P̂

−1
k′:k−1P̂

umv
k′:k−1,k+(L21(k)−

P̂umv
k,k′:k−1P̂

−1
k′:k−1L11(k))(L11(k)

TP̂−1
k′:k−1L11(k))

−1(L21(k)
T−L11(k)

TP̂−1
k′:k−1P̂

umv
k′:k−1,k), the computational

complexity is n2
x. Hence, for calculating (22), the total computational complexity is

n3
d(k − 1)3 + n2

xn
2
d(1 + (m− 1)2)(k − 1)2 + (n3

xnd(m− 1)2 + nxnd)(k − 1)

+ n4
x(m− 1)2 + 3n3

x(m− 1)3 + 2n2
x. (43)

For calculating (36), the main computation lies in (37). By replacing k with m in (43), we can obtain
the computational complexity as follows:

n2
xn

2
d(m− 1)4 + n3

xnd(m− 1)3 + n3
d(m− 1)3 + 3n3

x(m− 1)3 + n2
xn

2
d(m− 1)2 + n4

x(m− 1)2

+ nxnd(m− 1) + 2n2
x. (44)

From (43) to (44), the computational complexity reduces from O(k3) to O(1). □
Theorem 4 indicates that from CRLB(dk−1) to PCRLB(dk−1), the computational complexity is re-

duced from O(k3) to O(1). In another word, the computational complexity of CRLB is reduced to be
time-independent.

4) Relaxed solution. Since the analytic solution of the problem (42) is hard to obtain, we next
provide a relaxed solution of (42). Denote the singular value decomposition of Gk−1 by

Gk−1 = Uk

(
Υk 0

)T
Vk, (45)

where Uk and Vk are orthogonal matrices, Υk ∈ Rnd×nd is a diagonal matrix, and denote

Mk = UT
k (Ãk + σInx)Uk =

(
Ã11 Ã12

Ã21 Ã22

)
, (46)

where Ã11 ∈ Rnd×nd . Then, the following theorem provides a relaxed solution of (42).

Theorem 5. A relaxed solution of (42) is given by

Σk = Uk

(
Σ̃∗

11 − Ã11 + σInd
0

0 σInx−nd

)
UT

k , (47)

where Σ̃∗
11 is the minimizer of the following semi-definite programming problem:

min
Σ̃11∈S+

tr(Σ̃11)

s.t. tr
(
Υ−2

k (Σ̃11 − Ã12Ã
−1
22 Ã21)

)
⩾ γ, Σ̃11 ⩾ Ã11.

(48)

Proof. Problem (42) is equivalent to

min
Σk∈S+

tr(Σk + Ãk)

s.t. tr
((

GT
k−1(Σk + Ãk)

−1Gk−1

)−1
)
⩾ γ, Σk + Ãk ⩾ Ãk + σInx

.
(49)
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From (45), we have GT
k−1(Σk + Ãk)

−1Gk−1 = VT
k

(
Υk 0

)
UT

k (Σk + Ãk)
−1Uk

(
Υk 0

)T
Vk. Denote

Σ̃−1
k = UT

k (Σk + Ãk)
−1Uk =

(
Σ̃11 Σ̃12

Σ̃21 Σ̃22

)−1

with Σ̃11 ∈ Rnd×nd . Then, the problem (49) is equivalent

to
min

Σ̃k∈S+
tr(Σ̃k)

s.t. tr

((
VT

k

(
Υk 0

)
Σ̃−1

k

(
Υk 0

)T
Vk

)−1
)

⩾ γ, Σ̃k ⩾ UT
k (Ãk + σInx

)Uk.
(50)

Here, we use the fact that tr(Σk + Ãk) = tr
(
UT

k (Σk + Ãk)Uk

)
= tr(Σ̃k). Denote Σ̃−1

k =

(
S11 S12

S21 S22

)
.

Then, we have S11 = (Σ̃11 − Σ̃12Σ̃
−1
22 Σ̃21)

−1 ∈ Rnd×nd , and

tr

((
VT

k

(
Υk 0

)
Σ̃−1

k

(
Υk 0

)T
Vk

)−1
)

= tr
(
(ΥkS11Υk)

−1
)
= tr

(
Υ−2

k (Σ̃11 − Σ̃12Σ̃
−1
22 Σ̃21)

)
.

Thus, the problem (50) is equivalent to

min
Σ̃11,Σ̃22∈S+

tr(Σ̃11) + tr(Σ̃22)

s.t. tr
(
Υ−2

k (Σ̃11 − Σ̃12Σ̃
−1
22 Σ̃21)

)
⩾ γ,

(
Σ̃11 Σ̃12

Σ̃21 Σ̃22

)
⩾

(
Ã11 Ã12

Ã21 Ã22

)
.

(51)

By letting Σ̃22 = Ã22, the problem (51) can be relaxed to

min
Σ̃11∈S+

tr(Σ̃11)

s.t. tr
(
Υ−2

k (Σ̃11 − Σ̃12Ã
−1
22 Σ̃21)

)
⩾ γ,

(
Σ̃11 Σ̃12

Σ̃21 Ã22

)
⩾

(
Ã11 Ã12

Ã21 Ã22

)
.

(52)

We adopt this relaxation because

(
Σ̃11 Σ̃12

Σ̃21 Σ̃22

)
⩾

(
Ã11 Ã12

Ã21 Ã22

)
⩾ 0 implies Σ̃11 ⩾ Ã11 and Σ̃22 ⩾ Ã22.

From the sufficient and necessary condition for the positive semi-definiteness of a matrix in terms of a
generalized Schur complement [43], we have(

Σ̃11 − Ã11 Σ̃12 − Ã12

Σ̃21 − Ã21 0

)
⩾ 0 ⇐⇒ Σ̃11 − Ã11 ⩾ 0, Σ̃21 − Ã21 = Σ̃12 − Ã12 = 0.

Thus, the problem (52) is equivalent to the problem (48). Further, let Σ∗
11 be the solution of (48). Then,

Σk = UkΣ̃kU
T
k − Ãk

= Uk

(
Σ̃∗

11 Ã12

Ã21 Ã22

)
UT

k − Ãk

= Uk

(
Ã11 Ã12

Ã21 Ã22

)
UT

k − Ãk +Uk

(
Σ̃∗

11 − Ã11 0

0 0

)
UT

k

= σInx +Uk

(
Σ̃∗

11 − Ã11 0

0 0

)
UT

k

= Uk

(
Σ̃∗

11 − Ã11 + σInd
0

0 σInx−nd

)
UT

k .

This completes the proof. □
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Theorem 5 indicates that the problem of determining the covariance matrixΣk of the perturbed noise is
finally converted to the problem of solving the semi-definite programming problem given by (48). Instead
of solving the original optimization problem (24) directly, we relax it to the semi-definite programming
problem (48), which has the following benefits: i) the computational complexity is greatly reduced; ii)
the semi-definite programming problem can be solved efficiently; iii) the privacy level remains no less
than γ.

5) Algorithm. The proposed privacy-preserving state estimation algorithm with low complexity is
summarized in Algorithm 1. The semi-definite programming problem (48) therein can be efficiently solved
by, e.g., the CVX package. For more details about the CVX package, the readers are referred to [44].

Algorithm 1 Privacy-preserving state estimation algorithm with low complexity

Input: x̂umv
k−1 , Ŝ

umv
k−1 , m, σ, γ

1: Prediction:
2: Calculate x̂−

k and Ŝ−
k using (2) and (3).

3: Update:
4: Calculate x̂umv

k and Ŝumv
k based on x̂umv

k−1 and Ŝumv
k−1 using (4) and (5).

5: Calculate the covariance matrix of the perturbed noise:
6: Set k′ = k −m+ 1.
7: Calculate each sub-block of P̂umv

k′:k recursively using (27)–(31), and then obtain P̂umv
k,k′:k−1 and P̂umv

k′:k−1,k

using (20).

8: Calculate P̂−1
k′:k−1 using (11).

9: Calculate L̃k using (35), and then obtain L̃11 and L̃21 using (38).
10: Calculate Ãk using (37).
11: Perform singular value decomposition on Gk−1 to obtain Υk and Uk using (45).
12: Calculate Mk using (46) with the pre-set σ to obtain Ã11, Ã12, Ã21, and Ã22.
13: Solve the semi-definite programming problem (48) to obtain Σ̃∗

11, with γ being the pre-set privacy
level.

14: Calculate Σk using (47).
15: Privacy-preserving state estimation:
16: Generate αk ∼ N (0,Σk).
17: Set x̂k = x̂umv

k +αk.

18: Set Ŝk = Ŝumv
k +Σk.

Output: x̂k, Ŝk

4.2 Relation to differential privacy

This subsection shows that Algorithm 1 also ensures (ϵ, δ)-differential privacy. To this end, we first define
the sensitivity of Algorithm 1 as follows, which determines how much perturbed noise should be added.

Definition 1 (Sensitivity). Suppose that Rnd is equipped with an adjacency relation Adj. The sensi-
tivity of a query q : Rnd → Rn is defined as

∆Aq := sup
dk,d′

k:Adj(dk,d′
k)

∥q(dk)− q(d′
k)∥A, A > 0.

At time step k, the change in dk−1 only affects x̂k rather than x̂k′:k−1, and thus, the Gaussian
mechanism Mq : Rnx × Rnx → Rnx is defined by Mq(dk−1) = x̂k = q(dk−1) + ω, where ω ∼ N (0, P̂k),

P̂k = P̂umv
k + Σk is the covariance matrix of x̂k, and q(dk) = E[x̂k] = KkHkGk−1dk−1 + ck with ck

being a constant vector. Based on these analyses, we can show exactly what level of differential privacy
Algorithm 1 can ensure in the following theorem.

Theorem 6 (Differential privacy). For any ϵ ⩾ 0, Algorithm 1 is (ϵ, δ)-differentially private with

δ = Q(ξ) = 1√
2π

∫∞
ξ

exp{− z2

2 }dz and

ξ = −
∆P̂−1

k
q

2
+

ϵ

∆P̂−1
k
q
. (53)



Sci China Inf Sci 17

Proof. Let dk−1, dk′−1 be two adjacent elements in Rnd , and denote v := KkHkGk−1(dk−1 − dk′−1).
Then, for any Borel set S ∈ Rnx , we have

P (Mq(dk−1) ∈ S)

=

∫
S

N (u; q(dk−1), P̂k)du

=

∫
S

(2π)−
nx
2 det(P̂k)

− 1
2 exp

{
− 1

2

∥∥u− q(dk−1)
∥∥2
P̂−1

k

}
du

=

∫
S

(2π)−
nx
2 det(P̂k)

− 1
2 exp

{
− 1

2

∥∥u− q(dk′−1)
∥∥2
P̂−1

k

}
exp

{(
u− q(dk′−1)

)T
P̂−1

k v − 1

2
∥v∥2

P̂−1
k

}
du.

Let f(u) = (u− q(dk′−1))
TP̂−1

k v − 1
2∥v∥

2
P̂−1

k

, A = {u|f(u) ⩽ ϵ}. Then,

P (Mq(dk−1) ∈ S)

=

∫
S∩A

(2π)−
nx
2 det(P̂k)

− 1
2 exp

{
− 1

2

∥∥u− q(dk′−1)
∥∥2
P̂−1

k

}
exp{f(u)}du+

∫
S∩Ac

N (u; q(dk−1), P̂k)du

⩽ eϵP (Mq(dk′−1) ∈ S) +

∫
S

N (u; q(dk−1), P̂k)I[f(u)>ϵ]du,

where Ac is the complement set to A, and I[f(u)>ϵ] is an indicative function defined as I[f(u)>ϵ] ={
1 f(u) > ϵ

0 f(u) ⩽ ϵ
. Let y = P̂

− 1
2

k (u− q(dk−1)). Then, we have

P (Mq(dk−1) ∈ S) ⩽ eϵP (Mq(dk′−1) ∈ S) +

∫
S

N (y; 0, Inx)I
[vTP̂

− 1
2

k y>− 1
2∥v∥

2

P̂
−1
k

+ϵ]
dy

⩽ eϵP (Mq(dk′−1) ∈ S) +Q
(
− 1

2
∥v∥P̂−1

k
+

ϵ

∥v∥P̂−1
k

)

⩽ eϵP (Mq(dk′−1) ∈ S) +Q
(
−

∆P̂−1
k
q

2
+

ϵ

∆P̂−1
k
q

)
.

Thus, for any ϵ ⩾ 0, Mq is (ϵ,Q(ξ))-differentially private, where ξ is given by (53). □

Remark 4. As established by Theorem 6, for any fixed ϵ ⩾ 0, a larger value γ leads to a smaller value
of δ. This relationship can be further detailed: increasing γ results in a larger matrix P̂k. Furthermore,
it follows from (53) that a larger P̂k implies a greater ξ, which consequently leads to a smaller δ. This
relationship is further illustrated in Fig. 6.

5 Examples

In this section, we demonstrate the effectiveness of the proposed algorithm through two examples.

5.1 Practical case: Building occupancy

Consider Example 1 and set σ = 10−4, m = 2 and γ = 0.5 in Algorithm 1. Figs. 3(a) and 3(b) highlight
that the estimated trajectory of CO2 level by the proposed algorithm is very close to the real one. In
contrast, the estimated trajectory of the occupancy is not identical with the real one almost every time
step. This demonstrates that the proposed algorithm performs well in estimating CO2 level and protecting
occupancy, ensuring privacy and utility simultaneously.

5.2 Numerical case: A two-dimensional model

Consider the two-dimensional dynamic system xk+1 = Fxk + Gdk + wk, where xk ∈ R2, dk ∈ R,

F =

(
1 1

0 1

)
, G =

(
0.5 0.5

)T
, wk ∼ N (0,Qk) with Qk = 2I2. The initial state x0 was drawn from
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(a) CO2 level and its estimates by unbiased minimum-variance

and privacy-preserving state estimates.
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(b) Occupancy and its estimates by the adversary using unbiased

minimum-variance and privacy-preserving state estimates.

Figure 3 CO2 level, occupancy and their estimates.

the Gaussian distribution N (x̄0,P0) with x̄0 =
(
2 2
)T

and P0 = 0.1I2. The exogenous input dk is

generated independently and identically distributed from a uniform distribution over the interval [0, 5].
The measurement equation is yk = Hxk + vk, where yk ∈ R2, H = I2, vk ∼ N (0,Rk) with Rk = I2.
We set γ = 11, m = 3 and σ = 10−4 in Algorithm 1. In addition to the PCRLB derived in (36), we also
employ the CRLB presented in (21) for comparative analysis.
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(a) MSEs of unbiased minimum-variance and privacy-preserving

state estimates.
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(b) Trajectories of real states, unbiased minimum-variance state

estimates, and privacy-preserving state estimates.

Figure 4 Comparison of unbiased minimum-variance and privacy-preserving state estimates.

Fig. 4(a) reports the MSEs of the proposed algorithm over 50 time steps and 500 Monte Carlo runs
(i.e., the black solid line and the red dotted line), where the unbiased minimum-variance state estimate
serves as a benchmark (i.e., the green dashed line). In Fig. 4(a), both the black solid line and the
red dotted line lie above the green dashed line, which revels that the MSEs of the proposed algorithm
are greater than those of the unbiased minimum-variance state estimate. This is reasonable due to the
perturbed noise. Besides, by noting that the red dotted line and the black solid line exhibit highly similar
estimation performance, we can infer that the approximation errors of PCRLB and CRLB are negligible
in this example, which is specifically reflected in their nearly identical accuracy in state estimation. Fig.
4(b) depicts the real state trajectory and the estimated trajectories by the unbiased minimum-variance
state estimator and the proposed algorithm. This figure reveals that the proposed algorithm has good
estimation performance similar to the that of the unbiased minimum-variance estimator.

Fig. 5 highlights that the MSEs of the adversary’s estimates for dk with either unbiased minimum-
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variance (green dashed line) or privacy-preserving state estimates (black solid and red dotted lines). We

have the following two observations: i) MSEs of d̂k with privacy-preserving state estimates are greater

than those of d̂umv
k with unbiased minimum-variance state estimates. This is resulted from the perturbed

noise strategy. ii) MSEs of d̂k with privacy-preserving state estimates are greater than the threshold γ,

while MSEs of d̂umv
k with unbiased minimum-variance state estimates are smaller than the threshold γ.

This phenomenon indicates that the proposed privacy-preserving state estimates do protect the exogenous
input such that the MSEs of the adversary’s estimates for dk are not less than γ.
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Figure 5 MSEs of the adversary’s estimates for dk with either unbiased minimum-variance or privacy-preserving state estimates.

Fig. 6 quantitatively displays the correlation between the proposed CRLB-based method and differ-
ential privacy. We can see that as the parameter γ measuring the privacy level increases, the curves
approach the origin more closely, indicating that the level of differential privacy is higher.
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Figure 6 Correlation between the proposed CRLB-based method and differential privacy.

Table 1 reports the MSEs of x̂ and d̂ averaged over 50 time steps and 500 Monte Carlo runs under
different privacy level γ. It is observed that as γ increases, both the MSE of x̂ and the MSE of the
adversary’s estimate for dk increase. This is because, as the privacy level increases, the accuracy of
state estimation decreases while the level of exogenous input protection strengthens, demonstrating the
trade-off between the state estimation accuracy and the privacy level. Additionally, it is noteworthy that
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Table 1 Averaged MSEs of x̂ and d̂ under different privacy level γ.

γ 9 10 11 12 13

MSE of x̂ 1.6852 1.6852 1.7664 1.9998 2.2488

MSE of d̂ 10.7997 10.7997 11.3009 12.8472 14.4323

when γ = 9 and γ = 10, the MSE values are identical. This phenomenon stems from the fact that, under
the framework of unbiased minimum variance state estimation, the MSE associated with the adversary’s
optimal unbiased estimate of d exceeds 10, thereby eliminating the necessity for additional noise injection.

6 Conclusion

We have developed a CRLB-based privacy-preserving state estimation algorithm with low complexity,
which also ensures (ϵ, δ)-differential privacy. Specifically, by perturbing the unbiased minimum-variance
state estimate with a zero-mean Gaussian noise, we have designed a noisy state estimate that prevents
the adversary from inferring the exogenous inputs. Adopting the CRLB allows constraining the MSE of
the adversary’s estimate for the exogenous inputs. By minimizing the MSE of the noisy state estimate
subject to a certain privacy level measured by CRLB, we have ensured privacy and utility by solving a non-
convex constrained optimization. Additionally, we have provided explicit and low-complexity calculations
for CRLB, significantly reducing the computational complexity from O(k3) to O(1). Furthermore, we
have solved the constrained optimization efficiently by providing a relaxed solution. Finally, we have
demonstrated the effectiveness of the proposed algorithm through two examples, including a practical
scenario for protecting building occupancy.

In practice, the measurements are usually collected by some sensors in a network structure, so our
future work includes studying the privacy-preserving state estimation problem for multi-sensor systems.
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